Incorporating desirable genetic characteristics from an inferior into a superior population using genomic selection.

نویسندگان

  • J Odegård
  • M H Yazdi
  • A K Sonesson
  • T H E Meuwissen
چکیده

Resistance to specific diseases may be improved by crossing a recipient line with a donor line (a distantly related strain) that is characterized by the desirable trait. However, considerable losses in the total merit index are expected when crossing recipient and donor lines. Repeated backcrossing with the recipient line will improve total merit index, but usually at the expense of the newly introgressed disease resistance, especially if this is due to polygenic effects rather than to a known single major QTL. This study investigates the possibilities for a more detailed introgression program based on marker-trait associations using dense marker genotyping and genomic selection. Compared with classical selection, genomic selection increased genetic gain, with the largest effect on low heritability traits and on traits not recorded on selection candidates (due to within-family selection). Further, within a wide range of economic weights and initial differences in the total merit index between donor and recipient lines, genomic selection produced backcrossed lines that were similar or better than the purebred lines within three to five generations. When using classical selection in backcrossing schemes, the long-term genetic contribution of the donor line was low. Hence, such selection schemes would usually perform similarly to simple purebreeding selection schemes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic and Economic Aspects of Applying Embryo Transfer in Traditional and Genomic Evaluation in Iranian Holstein Dairy Cattle

Embryo transfer (ET) in Holstein dairy cattle became an important commercial enterprise after the introduction of non-surgical recovery technique. Embryo transfer could increase the reproductive rate of genetically superior cows. The objectives of the present study were to evaluate the use of ET in Iranian Holstein dairy cattle to increase selection intensity on the dam side, economically; esti...

متن کامل

مقایسه روش های مختلف آماری در انتخاب ژنومی گاوهای هلشتاین

Genomic selection combines statistical methods with genomic data to predict genetic values for complex traits.  The accuracy of prediction of genetic values ​​in selected population has a great effect on the success of this selection method. Accuracy of genomic prediction is highly dependent on the statistical model used to estimate marker effects in reference population. Various factors such a...

متن کامل

Selection of Barley Superior Lines with Desirable Agronomic Characteristics Using the Selection Index of Ideal Genotype (SIIG)

This study was conducted to investigate the phenotypic diversity of 108 pure barley lines in Augment design with four controls in six blocks in the farm of Darab Agricultural Research Station (2020-2021). In order to select the best lines in terms of yield and other traits, SIIG index was used. The results of restricted maximum likelihood (REML) analysis showed that the lowest and highest level...

متن کامل

The Effect of Dams of Sire Path Management on Genetic and Economic Parameters in a Simulated Genomic Selection Program

A deterministic model based on the gene flow method, considering the features of Iranian Holstein cattle population, was implemented in this study to evaluate the effect of altering the number of age-classes in the dams of future sire (DS) path and the number of dams required for breeding a young bull (YB), to be evaluated as future sire, on genetic gain and resultant economic efficiency of a g...

متن کامل

The Impact of Different Genetic Architectures on Accuracy of Genomic Selection Using Three Bayesian Methods

Genome-wide evaluation uses the associations of a large number of single nucleotide polymorphism (SNP) markers across the whole genome and then combines the statistical methods with genomic data to predict the genetic values. Genomic predictions relieson linkage disequilibrium (LD) between genetic markers and quantitative trait loci (QTL) in a population. Methods that use all markers simultaneo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 181 2  شماره 

صفحات  -

تاریخ انتشار 2009